News & Events

Dynamic Materials for Biofabrication

More News

Integrating Biofabrication Technologies

Unlocking the secrets of osteochondral regeneration has long been a daunting challenge, with the intricate interplay between cartilage and bone presenting formidable hurdles. However, a groundbreaking approach is on the horizon, poised to redefine the landscape of tissue regeneration: multiphasic scaffolds – the cornerstone of cutting-edge strategies aimed at mirroring the complexities of the osteochondral unit and nurturing the growth of implanted bone-marrow derived stem cells (BMSCs). Yet, amidst the promise, hurdles remain. Stem cell loss during expansion in vitro and the limited control over their behavior within scaffolds both in vitro and in vivo pose formidable challenges.

Read More

Bioprinting in Space

In a new Pathfinder Open project, PULSE, we have partnered with different experts in space technology and use thereof to study how the Space environment could be working as an accelerator of ageing…

Read More

New Hybrid Biofabrication technology

Many tissues in our body display gradients. These are not only biological gradients, but also structural, physical, and chemical ones, resulting in smoother variations of mechanical properties and cell functional activity.

Read More

Kidney 3D in vitro models through bioprinting

At the Complex Tissue Regeneration department, we work hard to bridge the gap towards the dream of organs bioprinting. Step by step, we are now progressing towards understanding more and more in depth the requirements to bioprint different kidney cells, either derived from pluripotent stem cells or of adult species.

Read More

Bioprinting through Levitation

Magnetic levitation offers the possibility to place cells in a precise position in space through controlling the magnetic forces applied to magnetized cells. This new biofabrication technique, at the interface between bioprinting and bioassembly, provides new ways to create large-scale biological constructs that can be used for regenerative medicine purposes.

Read More

Dynamic Materials for Biofabrication
Published on: March 12, 2017
Category: Events

In DYNAM, we will develop new hydrogels that can recapitulate such dynamic behaviour of our tissues and organs. These hydrogels will be then characterized for bioprinting applications. The project is in collaboration with Tecnical University of Eindhoven, Xilloc Medical, DSM, and is part of the Brightlands Materials Center. To know more, please see (in Dutch):

http://www.brightlandsmaterialscenter.com/dynamische-3d-printmaterialen-ontwikkelen-nieuwe-publiek-private-samenwerking-dutch/