News & Events
SINERGIA: biofabrication for 3D in vitro models
More News
Integrating Biofabrication Technologies
Unlocking the secrets of osteochondral regeneration has long been a daunting challenge, with the intricate interplay between cartilage and bone presenting formidable hurdles. However, a groundbreaking approach is on the horizon, poised to redefine the landscape of tissue regeneration: multiphasic scaffolds – the cornerstone of cutting-edge strategies aimed at mirroring the complexities of the osteochondral unit and nurturing the growth of implanted bone-marrow derived stem cells (BMSCs). Yet, amidst the promise, hurdles remain. Stem cell loss during expansion in vitro and the limited control over their behavior within scaffolds both in vitro and in vivo pose formidable challenges.
Read More
Bioprinting in Space
In a new Pathfinder Open project, PULSE, we have partnered with different experts in space technology and use thereof to study how the Space environment could be working as an accelerator of ageing…
Read More
New Hybrid Biofabrication technology
Many tissues in our body display gradients. These are not only biological gradients, but also structural, physical, and chemical ones, resulting in smoother variations of mechanical properties and cell functional activity.
Read More
Kidney 3D in vitro models through bioprinting
At the Complex Tissue Regeneration department, we work hard to bridge the gap towards the dream of organs bioprinting. Step by step, we are now progressing towards understanding more and more in depth the requirements to bioprint different kidney cells, either derived from pluripotent stem cells or of adult species.
Read More
Bioprinting through Levitation
Magnetic levitation offers the possibility to place cells in a precise position in space through controlling the magnetic forces applied to magnetized cells. This new biofabrication technique, at the interface between bioprinting and bioassembly, provides new ways to create large-scale biological constructs that can be used for regenerative medicine purposes.
Read More
Published on: December 17, 2019
Category: New Open Position
The Marie Skłodowska-Curie Actions Innovative Training Network (H2020-MSCA-ITN-2019-860715) “Advanced technologieS for drug dIscovery and precisioN mEdicine: in vitRo modellinG human physiology and diseAse” (SINERGIA) invites applications for 15 early-stage researcher (ESR) positions, available with a starting date in the period Feb 1st – May 1st 2020 for a period of three years. The network comprises 10 beneficiaries and 4 partner organisations from both the academic and industrial sectors from 6 countries (Italy, Switzerland, The Netherlands, Czech Republic, Germany and United Kingdom).
Within this network, in our lab there will be two positions on kidney bioprinting with the group of Dr. Carlos Mota. For more informations:
https://www.sinergia2020.polimi.it/